Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining
نویسندگان
چکیده
Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion.
منابع مشابه
Angiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells
Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...
متن کاملEffect of Adenosine Agonists on the Proliferation and Differentiation of Chick Embryo Fibroblasts in Three Dimensional Reconstituted Tissue Constructs
Previous studies indicate that organ fibroblasts play an important role in wound healing, collagen production, remodeling processes and pathogenesis of progressive heart, lung, renal and hepatic fibrotic diseases. Several studies suggest a possible inhibitory role for adenosine in the regulation of fibroblast proliferation. The effect of adenosine A2 agonists on proliferation and differentiatio...
متن کاملA novel organotypic 3D sweat gland model with physiological functionality
Dysregulated human eccrine sweat glands can negatively impact the quality-of-life of people suffering from disorders like hyperhidrosis. Inability of sweating can even result in serious health effects in humans affected by anhidrosis. The underlying mechanisms must be elucidated and a reliable in vitro test system for drug screening must be developed. Here we describe a novel organotypic three-...
متن کاملHuman eccrine sweat gland. Expression of neuroglandular antigens and coexpression of intermediate filaments.
Acrosyringium, duct and secretory epithelium as well as myoepithelial cells of human eccrine sweat glands have been characterized by different immunostaining patterns with mono- and polyclonal antibodies to a wide spectrum of tissue antigens. Using monoclonal antibodies to neuron-specific enolase (NSE) and melanoma-associated antigens (LS 59, HMB-45, NKI/C-3) the expression of neuroectodermal a...
متن کاملSynthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction
In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...
متن کامل